National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
Abstract:Queue management and resource allocation play a critical role in enabling cooperative status awareness in vehicular networks. This paper investigates the problem of age of information (AoI)-aware status updates in vehicle-to-vehicle (V2V) communication, where each vehicle's status is represented by multiple interdependent packets. To enable fine-grained queue management at the packet level under resource constraints, we formulate a joint optimization problem that simultaneously learns active packet dropping and transmit power control strategies. A hybrid action space is designed to support both discrete dropping decisions and continuous power control. To exploit the graph-structured interference inherent in V2V topology, a graph neural network (GNN) is introduced to aggregate slowly varying large-scale fading, allowing agents to capture topological dependencies implicitly without frequent message exchange. The overall framework is built upon multi-agent proximal policy optimization (MAPPO), with centralized training and decentralized execution (CTDE). Simulations demonstrate that the proposed method significantly reduces average AoI across a wide range of network densities, channel conditions, and traffic loads, consistently outperforming several baselines.
Abstract:Understanding the generalization behavior of deep neural networks remains a fundamental challenge in modern statistical learning theory. Among existing approaches, PAC-Bayesian norm-based bounds have demonstrated particular promise due to their data-dependent nature and their ability to capture algorithmic and geometric properties of learned models. However, most existing results rely on isotropic Gaussian posteriors, heavy use of spectral-norm concentration for weight perturbations, and largely architecture-agnostic analyses, which together limit both the tightness and practical relevance of the resulting bounds. To address these limitations, in this work, we propose a unified framework for PAC-Bayesian norm-based generalization by reformulating the derivation of generalization bounds as a stochastic optimization problem over anisotropic Gaussian posteriors. The key to our approach is a sensitivity matrix that quantifies the network outputs with respect to structured weight perturbations, enabling the explicit incorporation of heterogeneous parameter sensitivities and architectural structures. By imposing different structural assumptions on this sensitivity matrix, we derive a family of generalization bounds that recover several existing PAC-Bayesian results as special cases, while yielding bounds that are comparable to or tighter than state-of-the-art approaches. Such a unified framework provides a principled and flexible way for geometry-/structure-aware and interpretable generalization analysis in deep learning.
Abstract:In the multi-cell multiuser multi-input multi-output (MU-MIMO) systems, fractional programming (FP) has demonstrated considerable effectiveness in optimizing beamforming vectors, yet it suffers from high computational complexity. Recent improvements demonstrate reduced complexity by avoiding large-dimension matrix inversions (i.e., FastFP) and faster convergence by learning to unfold the FastFP algorithm (i.e., DeepFP).
Abstract:In this article, a framework of AI-native cross-module optimized physical layer with cooperative control agents is proposed, which involves optimization across global AI/ML modules of the physical layer with innovative design of multiple enhancement mechanisms and control strategies. Specifically, it achieves simultaneous optimization across global modules of uplink AI/ML-based joint source-channel coding with modulation, and downlink AI/ML-based modulation with precoding and corresponding data detection, reducing traditional inter-module information barriers to facilitate end-to-end optimization toward global objectives. Moreover, multiple enhancement mechanisms are also proposed, including i) an AI/ML-based cross-layer modulation approach with theoretical analysis for downlink transmission that breaks the isolation of inter-layer features to expand the solution space for determining improved constellation, ii) a utility-oriented precoder construction method that shifts the role of the AI/ML-based CSI feedback decoder from recovering the original CSI to directly generating precoding matrices aiming to improve end-to-end performance, and iii) incorporating modulation into AI/ML-based CSI feedback to bypass bit-level bottlenecks that introduce quantization errors, non-differentiable gradients, and limitations in constellation solution spaces. Furthermore, AI/ML based control agents for optimized transmission schemes are proposed that leverage AI/ML to perform model switching according to channel state, thereby enabling integrated control for global throughput optimization. Finally, simulation results demonstrate the superiority of the proposed solutions in terms of BLER and throughput. These extensive simulations employ more practical assumptions that are aligned with the requirements of the 3GPP, which hopefully provides valuable insights for future standardization discussions.
Abstract:Semantic communication has been introduced into collaborative perception systems for autonomous driving, offering a promising approach to enhancing data transmission efficiency and robustness. Despite its potential, existing semantic communication approaches predominantly rely on analog transmission models, rendering these systems fundamentally incompatible with the digital architecture of modern vehicle-to-everything (V2X) networks and posing a significant barrier to real-world deployment. To bridge this critical gap, we propose CoDS, a novel collaborative perception framework based on digital semantic communication, designed to realize semantic-level transmission efficiency within practical digital communication systems. Specifically, we develop a semantic compression codec that extracts and compresses task-oriented semantic features while preserving downstream perception accuracy. Building on this, we propose a novel semantic analog-to-digital converter that converts these continuous semantic features into a discrete bitstream, ensuring integration with existing digital communication pipelines. Furthermore, we develop an uncertainty-aware network (UAN) that assesses the reliability of each received feature and discards those corrupted by decoding failures, thereby mitigating the cliff effect of conventional channel coding schemes under low signal-to-noise ratio (SNR) conditions. Extensive experiments demonstrate that CoDS significantly outperforms existing semantic communication and traditional digital communication schemes, achieving state-of-the-art perception performance while ensuring compatibility with practical digital V2X systems.




Abstract:Synthetic aperture radar (SAR) deployed on unmanned aerial vehicles (UAVs) is expected to provide burgeoning imaging services for low-altitude wireless networks (LAWNs), thereby enabling large-scale environmental sensing and timely situational awareness. Conventional SAR systems typically leverages a deterministic radar waveform, while it conflicts with the integrated sensing and communications (ISAC) paradigm by discarding signaling randomness, in whole or in part. In fact, this approach reduces to the uplink pilot sensing in 5G New Radio (NR) with sounding reference signals (SRS), underutilizing data symbols. To explore the potential of data-aided imaging, we develop a low-altitude SAR imaging framework that sufficiently leverages data symbols carried by the native orthogonal frequency division multiplexing (OFDM) communication waveform. The randomness of modulated data in the temporal-frequency (TF) domain, introduced by non-constant modulus constellations such as quadrature amplitude modulation (QAM), may however severely degrade the imaging quality. To mitigate this effect, we incorporate several TF-domain filtering schemes within a rangeDoppler (RD) imaging framework and evaluate their impact. We further propose using the normalized mean square error (NMSE) of a reference point target's profile as an imaging performance metric. Simulation results with 5G NR parameters demonstrate that data-aided imaging substantially outperforms pilot-only counterpart, accordingly validating the effectiveness of the proposed OFDM-SAR imaging approach in LAWNs.
Abstract:The Channel Quality Indicator (CQI) is a fundamental component of channel state information (CSI) that enables adaptive modulation and coding by selecting the optimal modulation and coding scheme to meet a target block error rate. While AI-enabled CSI feedback has achieved significant advances, especially in precoding matrix index feedback, AI-based CQI feedback remains underexplored. Conventional subband-based CQI approaches, due to coarse granularity, often fail to capture fine frequency-selective variations and thus lead to suboptimal resource allocation. In this paper, we propose an AI-driven subcarrier-level CQI feedback framework tailored for 6G and NextG systems. First, we introduce CQInet, an autoencoder-based scheme that compresses per-subcarrier CQI at the user equipment and reconstructs it at the base station, significantly reducing feedback overhead without compromising CQI accuracy. Simulation results show that CQInet increases the effective data rate by 7.6% relative to traditional subband CQI under equivalent feedback overhead. Building on this, we develop SR-CQInet, which leverages super-resolution to infer fine-grained subcarrier CQI from sparsely reported CSI reference signals (CSI-RS). SR-CQInet reduces CSI-RS overhead to 3.5% of CQInet's requirements while maintaining comparable throughput. These results demonstrate that AI-driven subcarrier-level CQI feedback can substantially enhance spectral efficiency and reliability in future wireless networks.
Abstract:Incorporating over-the-air computations (OAC) into the model training process of federated learning (FL) is an effective approach to alleviating the communication bottleneck in FL systems. Under OAC-FL, every client modulates its intermediate parameters, such as gradient, onto the same set of orthogonal waveforms and simultaneously transmits the radio signal to the edge server. By exploiting the superposition property of multiple-access channels, the edge server can obtain an automatically aggregated global gradient from the received signal. However, the limited number of orthogonal waveforms available in practical systems is fundamentally mismatched with the high dimensionality of modern deep learning models. To address this issue, we propose Freshness Freshness-mAgnItude awaRe top-k (FAIR-k), an algorithm that selects, in each communication round, the most impactful subset of gradients to be updated over the air. In essence, FAIR-k combines the complementary strengths of the Round-Robin and Top-k algorithms, striking a delicate balance between timeliness (freshness of parameter updates) and importance (gradient magnitude). Leveraging tools from Markov analysis, we characterize the distribution of parameter staleness under FAIR-k. Building on this, we establish the convergence rate of OAC-FL with FAIR-k, which discloses the joint effect of data heterogeneity, channel noise, and parameter staleness on the training efficiency. Notably, as opposed to conventional analyses that assume a universal Lipschitz constant across all the clients, our framework adopts a finer-grained model of the data heterogeneity. The analysis demonstrates that since FAIR-k promotes fresh (and fair) parameter updates, it not only accelerates convergence but also enhances communication efficiency by enabling an extended period of local training without significantly affecting overall training efficiency.




Abstract:Accurate channel state information (CSI) acquisition is essential for modern wireless systems, which becomes increasingly difficult under large antenna arrays, strict pilot overhead constraints, and diverse deployment environments. Existing artificial intelligence-based solutions often lack robustness and fail to generalize across scenarios. To address this limitation, this paper introduces a predictive-foundation-model-based channel estimation framework that enables accurate, low-overhead, and generalizable CSI acquisition. The proposed framework employs a predictive foundation model trained on large-scale cross-domain CSI data to extract universal channel representations and provide predictive priors with strong cross-scenario transferability. A pilot processing network based on a vision transformer architecture is further designed to capture spatial, temporal, and frequency correlations from pilot observations. An efficient fusion mechanism integrates predictive priors with real-time measurements, enabling reliable CSI reconstruction even under sparse or noisy conditions. Extensive evaluations across diverse configurations demonstrate that the proposed estimator significantly outperforms both classical and data-driven baselines in accuracy, robustness, and generalization capability.
Abstract:Due to the significant variations in unmanned aerial vehicle (UAV) altitude and horizontal mobility, it becomes difficult for any single network to ensure continuous and reliable threedimensional coverage. Towards that end, the space-air-ground integrated network (SAGIN) has emerged as an essential architecture for enabling ubiquitous UAV connectivity. To address the pronounced disparities in coverage and signal characteristics across heterogeneous networks, this paper formulates UAV mobility management in SAGIN as a constrained multi-objective joint optimization problem. The formulation couples discrete link selection with continuous trajectory optimization. Building on this, we propose a two-level multi-agent hierarchical deep reinforcement learning (HDRL) framework that decomposes the problem into two alternately solvable subproblems. To map complex link selection decisions into a compact discrete action space, we conceive a double deep Q-network (DDQN) algorithm in the top-level, which achieves stable and high-quality policy learning through double Q-value estimation. To handle the continuous trajectory action space while satisfying quality of service (QoS) constraints, we integrate the maximum-entropy mechanism of the soft actor-critic (SAC) and employ a Lagrangian-based constrained SAC (CSAC) algorithm in the lower-level that dynamically adjusts the Lagrange multipliers to balance constraint satisfaction and policy optimization. Moreover, the proposed algorithm can be extended to multi-UAV scenarios under the centralized training and decentralized execution (CTDE) paradigm, which enables more generalizable policies. Simulation results demonstrate that the proposed scheme substantially outperforms existing benchmarks in throughput, link switching frequency and QoS satisfaction.